首页> 外文OA文献 >Novel microstructural strategies to enhance the electrochemical performance of La0.8Sr0.2MnO3-δ cathodes
【2h】

Novel microstructural strategies to enhance the electrochemical performance of La0.8Sr0.2MnO3-δ cathodes

机译:新的微观结构策略,以提高La0.8sr0.2mnO3-δ阴极的电化学性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Solid oxide fuel cells (SOFCs) are one of the most efficient technologies for direct conversion of fuels to electricity. La0.8Sr0.2MnO3-δ (LSM) is the cathode material most widely used in SOFCs [1], however, LSM exhibits high activation energy for oxygen reduction reaction (ORR) and low ionic conductivity, which limits its application at reduced temperatures. In this material the electrochemically active reaction sites are restricted to the triple-phase boundary (TPB) near the electrolyte/electrode interface, where the electrolyte, air and electrode meet. Different strategies have been investigated to enlarge the TPB area of LSM, such as the production of nanocrystalline powders by precursor routes, preparation of composites by infiltration methods and thin films[2-4]. Here we present and compare innovative procedures to extend the TPB of LSM in contact with yttria-stabilized zirconia electrolyte: i) nanocrystalline LSM films deposited by spray-pyrolysis on polished YSZ electrolyte; ii) the addition of polymethyl methacrylate microspheres as pore formers during the spray-pyrolysis deposition to further increase the porosity of these films and (iii) the deposition of LSM by spray-pyrolysis on porous backbones of Zr0.84Y0.16O1.92 (YSZ), Ce0.9Gd0.1O1.95 (CGO) and Bi1.5Y0.5O3- (BYO) electrolytes previously fixed onto the YSZ electrolyte.The most remarkable peculiarity of this novel preparation method, compared to the traditional impregnation, is the formation of LSM thick film of 500 nm on the electrode surface (Fig. 1), which improves the electrical conductivity of the composite cathode. Thus, the optimization of this novel method would be an alternative to the classical infiltration with several advantages for the industry of planar SOFCs allowing the deposition of a wide variety of ceramic films over large areas with more uniform distribution of the catalyst, lower cost and only one deposition step is required to form the electrode. The morphology and electrochemical performance of the electrode have been investigated by scanning electron microscopy and impedance spectroscopy. Very low values of area specific resistance were obtained ranging from 1.4 cm2 for LSM deposited on polished YSZ to 0.06 cm2 for LSM deposited onto BYO backbone at a measured temperature of 650 ºC. This electrodes exhibit high performance even after annealing at 950 ºC making them interesting for applications at intermediate temperatures.
机译:固体氧化物燃料电池(SOFC)是将燃料直接转化为电能的最有效技术之一。 La0.8Sr0.2MnO3-δ(LSM)是最广泛用于SOFC的阴极材料[1],但是LSM表现出高的氧还原反应(ORR)活化能和低离子电导率,这限制了其在降低的温度下的应用。在这种材料中,电化学活性反应位点被限制在电解质,空气和电极相遇的电解质/电极界面附近的三相边界(TPB)。为了扩大LSM的TPB面积,已经研究了不同的策略,例如通过前体路线生产纳米晶体粉末,通过渗透法制备复合材料和薄膜[2-4]。在这里,我们介绍并比较创新的方法,以扩大与氧化钇稳定的氧化锆电解质接触的LSM的TPB:i)通过喷雾热解沉积在抛光的YSZ电解质上的纳米晶LSM膜; ii)在喷涂热解沉积过程中添加聚甲基丙烯酸甲酯微球作为成孔剂,以进一步增加这些膜的孔隙率;(iii)通过喷涂热解在Zr0.84Y0.16O1.92(YSZ)的多孔骨架上沉积LSM ),Ce0.9Gd0.1O1.95(CGO)和Bi1.5Y0.5O3-(BYO)电解质先前已固定在YSZ电解质上。与传统的浸渍相比,这种新颖的制备方法最显着的特点是电极表面上500 nm的LSM厚膜的厚度(图1),可提高复合阴极的电导率。因此,这种新方法的优化将替代传统的渗透技术,对平面SOFC的工业具有多个优势,允许在大面积上沉积多种陶瓷膜,催化剂分布更均匀,成本更低,而且仅需要一个沉积步骤来形成电极。电极的形貌和电化学性能已通过扫描电子显微镜和阻抗谱进行了研究。在测量的温度为650ºC时,面积比电阻的值非常低,范围从沉积在抛光YSZ上的LSM的1.4Ωcm2到沉积在BYO主链上的LSM的0.06 cm2。该电极即使在950ºC退火后也表现出高性能,使其在中等温度下的应用变得有趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号